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Abstract

Based on fracture mechanics and theory of random processes, a probabilistic approach is proposed to analyze
fatigue crack growth, fatigue life and reliability of degrading elastic structural components in nonlinear structural

systems. Both the material resistance to fatigue crack growth and the time-history of stress are assumed to be
random. The e�ect of slow degradation of structural sti�ness due to fatigue crack growth is taken into account.
Analytical expressions are obtained for the special case where the random stress is a narrow-band process.

Numerical examples are given for two nonlinear structural systems important in practice assuming the randomized
Paris±Erdogan type crack growth law is applicable. To validate the approach, the results are compared with those
obtained from simulation. # 1999 Published by Elsevier Science Ltd. All rights reserved.

Keywords: Fracture mechanics; Random fatigue crack growth; Stochastic averaging; Fatigue life; Digital simulation; Random

loading

1. Introduction

Fatigue is known to be a major cause of failure of a large number of structural components. From a
fracture mechanics point of view, fatigue damage of a component subject to dynamic loading can be
measured by the size of the dominant crack, and failure occurs when this crack reaches a critical size. It
is widely recognized that fatigue crack growth is fundamentally a random phenomenon that can only be
quanti®ed in terms of probability and statistics. The two main reasons for the randomness in fatigue
crack growth behavior are the random material resistance to fatigue crack growth and the random
loading. During the last decade, several stochastic models have been proposed for the analysis of fatigue
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crack growth in elastic structural components with random material resistance under constant amplitude
loading (Lin and Yang, 1985; Kozin and Bogdano�, 1989; Ortiz and Kiremidjian, 1986). To account for
the e�ect of random stress ¯uctuations, Sobczyk (1986) proposed the replacement of the stress-intensity-
factor range in a deterministic crack growth law with an equivalent range, i.e., the root-mean-square
value of the stress intensity factor range. Bolotin (1989) derived an asymptotic expression for estimating
fatigue crack growth under random loading.

Recently, a probabilistic analysis of fatigue crack growth in elastic components with random material
resistance to fatigue crack growth of linear structural systems under random loading has been presented
by Zhu et al. (1992). It bases on fracture mechanics and the principle of Stratonovich's stochastic
averaging (Stratonovich, 1963), and is applicable when fatigue growth is a slow process compared with
the stress process, which is the case for high cycle fatigue. The random material resistance is modeled by
multiplying a random process to a suitable deterministic crack growth equation. Closed form solutions
for the ®rst and second order probability densities of the stationary narrow-band random stress process
are known and they can be used to determine the statistics of fatigue life of the components.

In the present paper, the above strategy is generalized to analyze fatigue crack growth in degrading
elastic components with random material resistance to fatigue crack growth of nonlinear structural
systems under stationary wide-band random loading. The method of stochastic averaging of the energy
envelope (Zhu and Lei, 1988; Zhu and Lin, 1991), which is e�cient for analyzing response of nonlinear
systems under random loading, is employed to evaluate the probabilistic distribution of the random
stress process. The slow degradation of structural sti�ness due to crack growth is taken into account.
Two important nonlinear structural systems are analyzed as numerical examples. In order to verify the
proposed approach, all the results are compared with those obtained from digital simulation.

2. General analysis procedure of fatigue crack growth

Neglecting the secondary factors in a deterministic model of fatigue crack growth in opening mode,
which is the predominate mode of macroscopic fatigue crack, the fatigue crack growth in elastic
material under cyclic loading is governed by the following equation

da

dn
� f �a,Ds�, �1�

where a is crack size (half length for a though crack), n is the number of stress cycles, f is a non-
negative function and Ds is stress range.

The two main reasons for the randomness in fatigue crack growth are random material resistance to
fatigue crack growth and random stress in structural systems. Vikler et al. (1979) conducted a large
replicate tests to identify the contribution of material inhomogeneity to the randomness observed in
laboratory fatigue crack growth data. Two types of inhomogeneity behavior, which are called low
frequency component and high frequency component, respectively, were noted. Both components have
apparently random nature. To account for the random material resistance to fatigue crack growth, Eq.
(1) may be randomized as follows

dA

dt
� mf�A,Ds,R�,Y�Z�, �2�

where R is a vector of material-dependent parameter with random variables as its components
describing the statistical scatter of material properties between specimens, and Y(Z ) is a positive random
process describing the random variability of material properties within a specimen. The statistical values,
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R and Y(Z ), are obtained from experimental data of fatigue crack growth under constant-amplitude
cyclic loading. m is the average number of cycles per unit time and the symbol for the crack size is
capitalized to signify that it is now a random process. The stress range, Ds, remains deterministic.

The positive random process Y(Z ) can be a random process of time, i.e. Y(Z )=Y(t ). This random
process model Y(t) has been investigated extensively (Lin and Yang, 1985; Sobczyk, 1986; Sobczyk and
Spencer, 1992; Zhu et al., 1992). Y(t ) is used to account for the whole irregular variability including
both high and low frequency components of fatigue crack growth, and R is taken to be a constant
vector. Thus the two components of variability in crack growth curves observed by Vikler were mixed.
But it is important and reasonable to split the two components in a stochastic model. So, in the present
paper, R and Y(t ) are assumed to be a random vector and a stationary random process with
E[Y(t )]=1, respectively, to account for the low and high frequency components of the material random
variability. Y(Z ) can also be a random function of the crack size a(t ), i.e., Y(Z )=Y(a ) (Yang and
Manning, 1990; Ortiz and Kiremidjian, 1986). Recently, the two stochastic models of fatigue crack
growth under constant amplitude cyclic loading have been studied by Jiang and Zhu (1996). Random
process Y(Z ) can be either a function of time or a function of crack size. The models proposed by them
yields better agreement with experimental data than other models available in literature.

Under stationary random loading, a logical generalization of Eq. (2) is to treat the stress range as the
absolute value of the di�erence between a local maximum and a neighboring local minimum, i.e.,

DS�t� � jS�t1� ÿ S�t2�j, t1Rt < t2, �3�

where t1 and t2 are the times at which two neighboring extrema of S(t ) occur. In this case, DS(t )
becomes a stationary random sequence and independent of Y(Z ), and m is interpreted as the number of
maxima per unit time. Then the modi®ed version of Eq. (2) now reads

dA

dt
� mf�A�t�,DS�t�,R��Y�Z�: �4�

The fatigue crack size A(t ) is assumed to be a slowly varying random process compared with the
stress process DS(t ). This is a reasonable assumption for high cycle fatigue since the correlation time of
DS(t ) is expected to be much smaller than the fatigue life of a component. According to the
Stratonovich±Khasminskii limit theorem (Stratonovich, 1963; Khasminskii, 1966), the crack size A(t ) is
approximately a di�usive Markov process. Upon applying the stochastic averaging procedure
(Khasminskii, 1966; Zhu, 1988, 1996), the Fokker±Planck equation for A(t ) is as follows

@p

@t
� ÿ @

@a
�m�a�p� � 1

2

@2

@a2
�s2�a�p�, �5�

where, when Y(Z )=Y(t ),

m�a� � mE� f�E�Y � � m2
�1
ÿ1

cov

 
@f

@A

����
t

,ft�t

!
cov�Y�t�,Y�t� t��dt, �6a�

s2�a� � m2
�1
ÿ1

cov� ft,ft�t�cov�Y�t�,Y�t� t��dt �6b�

and, when Y(Z )=Y(a ),
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m�a� � mE� �f � � m2
�1
ÿ1

cov

 
@ �f

@A

����
t
, �f t�t

!
dt �6c�

and

s2�a� � m2
�1
ÿ1

cov
�

�f t,
�f t�t

�
dt, �6d�

in which p=p(a,t|a0,t0,r) is the conditional transition probability density of A(t ), E[�] denotes an
ensemble average, and cov(�,�) denotes a covariance. Eq. (5) is solved subject to the initial condition

p�a,tja0,t0,r� � d�aÿ a0�, t � t0: �7�
By taking into account the low frequency component characterized by the random vector R, the

transition probability density function p(a,t|a0,t0) is then determined according to the total probability
theorem as

p�a,tja0,t0� �
�
p�a,tja0,t0,r�p�r�dr: �8�

The solution will provide a complete probability description of A(t ) or, more precisely, a Markovin
approximation of A(t ). Obviously, A(t ) is a non-decreasing process. The reliability of the component at
time t, conditional on a known initial crack size a0 at time t0 can be obtained from p=p(a,t|a0,t0) as
follows

R�acr,tja0,t0� �
�acr

a0

p�u,tja0,t0�du, �9�

where acr is critical crack size. The conditional probability density of fatigue life T is then obtained as

p�Tjt0,a0� � ÿ@R
@t

����
t�T

�10�

and the conditional mean and variance of fatigue life are

@pi
@t
� ÿ @

@a
�mi�a�pi � � 1

2

@ 2

@a2
�
s2i �a�pi

� �11a�

and

s2�Tja0,t0� �
�1
0

�Tÿ E�Tja0,t0��2p�Tja0,t0�dT: �11b�

In general, precise knowledge of the initial crack is not available, but its probability distribution can
be assumed. Thus the unconditional counterparts of Eqs. (8)±(11a) and (11b) can be obtained by
averaging over the range of initial condition.

Complications arise when the retardation (or acceleration) of the fatigue crack growth is considered.
Dolinski and Colombi (1996) proposed that in that case stress extreme S(t2) in Eq. (3) should be
modi®ed as the e�ective minimum of the stress, and thus the stress range should be substituted by the
e�ective stress range. Moreover, the fatigue crack growth involved load sequence e�ects due to the
presence of parameters associated with overloads. In practical application the length of correlation of
the sequence of extremes, Ncor=a dozen cycles or so, appears much shorter than the lengths of blocks
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consisting of retardation+post-retardation phase, NB=several dozen of cycles, and the number of cycles
to failure, NF=several thousands cycles or more, is much longer than NB's, i.e., Ncor<<NB<<NF. Under
stochastic stationary loading, the retardation+post-retardation blocks may be considered to constitute a
sequence of random, statistically independent, crack length increments having the same probability
distributions. These properties ensure that the fatigue crack growth can still be reasonably approximated
as a Markov process, and the above general analysis procedure can still be used. However, division of
the process of fatigue crack growth into the blocks and cumbersome calculation e�orts are involved in
doing so. For simplicity, the retardation e�ect is neglected in the present paper. It has been shown that
the predication of fatigue crack growth without considering the retardation e�ect is conservative (Jiang
and Zhu, 1996).

In applying the above procedure, the mean and variance of Y(Z ) are inferred from experimental data
of fatigue growth under constant-amplitude cyclic loading, and a key ingredient is the covariance of
DS(t ) at two di�erent times, which is needed to formulate the covariance of ft and ft+t, in Eqs. (6a) and
(6b) or of �f t and

�f t�t in Eqs. (6c) and (6d). Of course, the covariance of DS(t ) can be obtained if the
second order probability density of DS(t ) is known. Unfortunately, to the authors' knowledge, this
latter information is not available for a general stationary stress process. The special case of a stationary
narrow band Gaussian stress process has been studied (Zhu et al., 1992). In what follows, we will
investigate the case in which the stress in the elastic structural component with crack is proportional to
the displacement response of the whole nonlinear structural system under wide-band random loading.

3. Nonlinear structural systems with cracked elastic component under wide-band random excitation

The displacement of a SDOF nonlinear structural system is governed by the following non-
dimensional di�erential equation

X 00 � 2z0X
0 � g�X,X 0� � z�t�, �12�

where x, z0 and g(x,x ') are displacement, viscous damping ration and nonlinear restoring force of the
system, respectively, and a prime expresses the derivative with respect to t=o0t, o0 is the frequency of
the corresponding degenerated linear system, which is a constant value.

Considering degradation of the sti�ness due to crack growth, Eq. (12) is then modi®ed into

X 00 � 2z0X
0 � g�X,X 0,A� � x�t�, �13�

where g(x,x ',a ) denotes the slowly degrading nonlinear restoring force of the system. If x(t ) is a
stationary wide-band random process which can be modeled as a Gaussian white noise with intensity
2D, the method of Stochastic averaging of energy envelope (Zhu and Lei, 1988; Zhu and Lin, 1991)
leads to the following Fokker±Planck equation

@p

@t
� ÿ @

@e
�U�e,a�p� � 1

2

@ 2

@e2
�V 2�e,a�p�, �14�

where p(e,t|e,t0,a ) is the conditional transition probability density of energy envelope de®ned as e�t� �
x 0 2=2� G�x,a� with initial condition p(e,t|e,t0,a )=d(eÿe0) when t=t0, and

U�e,a� � ÿ�2z0F�e,a� � At�e,a��=T�e,a� �D,
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V 2�e,a� � 2DF�e,a�
T�e,a� ,

F�e,a� � 2

�l
ÿl

��������������������������
2eÿ 2G�x,a�

p
dx,

T�e,a� � 2

�l
ÿl

dx��������������������������
2eÿ 2G�x,a�p , �15�

in which Ar(e,a ) is the energy dissipation by the non-viscous damping in one cycle, G(x,a ) is the
potential energy of the nonlinear system when the current crack size is a, and l is the solution of the
equation G(l,a )=e.

The conditional stationary probability density of E(t ) can be obtained from the solution of the
reduced version of Eq. (14) without the time-derivative term

p�eja� � C1T�e,a�exp

�
ÿ
�e
0

�
2z0
D
� Ar�e 0,a�

DF�e 0,a�
�

de 0
�
, �16�

where C1 is a normalizing constant.
The conditional transition probability density function p(e2,t '|e1,a ) of E(t ) can be evaluated by

numerical solution of Eq. (14). According to the characteristics of the Markov process E(t ), the second
order probability density of the stationary process E(t ) is

p
ÿ
e1,e2;t 0ja

� � p
ÿ
e2,t 0je1,a

�
p�e1ja�, �17�

where t '=t2ÿt1. De®ning an amplitude envelope process P(t ) by G[P(t ),a ]=E(t ), the conditional ®rst
and second order probability densities of the stationary process P(t ) are then

p�rja� � p�eja�dG�r,a�
dr

����
e�G�r,a�

, �18�

p�r1r2;t 0ja� � p�e1,e2;t 0ja�dG�r1,a�
dr1

dG�r2,a�
dr2

����
ek�G�rk,a�

, �19�

in which k = 1,2
If the displacement response of nonlinear structural system is a rather narrow band process, the

displacement range can be replaced approximately by 2P(t ). Furthermore, assume that the stress in the
elastic component where crack propagates is proportional to the displacement of the whole nonlinear
system. Then DS(t ) is also proportional to 2P(t ). The covariance in Eqs. (6a±d) can be evaluated in
terms of Eqs. (18) and (19). Thus, the general procedure described in the last section can be applied by
combination with the statistics derived in this section.

The average number of cycles per unit time m can be evaluated by

m�a� �
�1
ÿ1

x 0p�0,x 0ja�dx 0, �20�

where
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p�x,x 0ja� � p�eja�
T�e,a�

����
e�x 0=2�G�x,a�

: �21�

In numerical calculations, the entire range of the crack size is divided into m small segments; namely,
[a0,a1], [a1,a2],..., [am ÿ 1,am ]. Since the degradation of sti�ness of the structural system is a slowly
varying process, in each small crack size segment, the stress range and the average number of cycles per
unit time can be assumed as being a random process and value independent of the crack size,
respectively. The corresponding Fokker±Planck equation for A(t ) in the i-th crack size region [ai ÿ 1,ai ]
(i= 1,2,..., m ) is then obtained as

@pi
@t
� ÿ @

@a
�mi�a�pi � � 1

2

@ 2

@a2
�
s2i �a�pi

�
, �22�

with the initial condition

pi�a,Dtijaiÿ1,r� � d�aÿ aiÿ1�, when Dti � 0, �23�
where pi(a,Dti|ai ÿ 1,r) ai ÿ 1 R a R ai is the conditional transition probability density function of A(t )
which takes the values between ai ÿ 1 and ai, and mi�a�,s2i �a� can be evaluated according to Eqs. (6a) and
(6b) or to Eqs. (6c) and (6d), respectively. In the i-th crack size segment, the average number of cycles
per unit time mi can be approximately evaluated by Eq. (20) as

mi � m
�
ai � aiÿ1

2

�
, �24�

and the ®rst and second order conditional probability densities of the stress process in this crack size
segment can also be approximately treated to be independent of crack size and take the values as

pi�r� � p

�
r
����ai � aiÿ1

2

�
, �25�

pi�r1,r2;t 0� � p

�
r1,r2;t

0
����ai � aiÿ1

2

�
: �26�

Finally, due to the characteristics of the Markov process A(t ), the conditional transition probability
density function p(a,t|a0) of A(t ) which takes the value in the range [ai ÿ 1,ai ] is

p�a,tja0,r� �

�aiÿ1
aiÿ2

�aiÿ2
aiÿ3

. . .

�a1
a0|�������������{z�������������}

iÿ 1

pi�a,Dtijyiÿ1,r�piÿ1� yiÿ1,Dtiÿ1jyiÿ2,r� . . . p1� y1,Dt1ja0,r�dyiÿ1 d

yiÿ2 . . . dy1, �27�

where

Xi
k�1

Dtk � t:

In discretion of the entire range of the crack size, mesh size should be selected appropriately. A
smaller mesh size results in more accurate statistical results in each segment but produces larger
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accumulative error. We successively divide the crack size segment into halves until the numerical results
of the conditional transition probabilities at the corresponding discretized points estimated from the two
adjacent discretion converge with the admissible error.

4. Example

Consider a thin square plate, l � l, with an initial central crack of length 2a0 and a structural
component in parallel supporting an in®nitely rigid heavy mass M at their end (see Fig. 1). The mass M
is subjected to a stationary wide-band load process x(t ) perpendicular to the crack with a one side
power spectral density G0. The plate is idealized to be elastic, massless, homogeneous, isotropic and with
light linear damping, whereas plasticity occurs in the other structural component and the total resorting
force of the system is nonlinear under severe loading. Degradation of plate sti�ness due to crack growth
is considered. The analysis procedure proposed in the present paper is applicable, as long as the
degradation is a slow process.

The displacement X(t ) satis®es the di�erential equation

M �X �t� � C _X �t� � Kfy�A�t��X� g2�X, _X �g � x�t�, �28�
where C denotes system damping and is considered to be time-invariant, K is the sti�ness of the plate,
and K�g2(x ) denotes the nonlinear sti�ness contributed by the nonlinear component. The function y(a )
accounts for the degradation of plate sti�ness due to crack growth and is approximated by the following
polynomial expression (Grigoriu, 1990)

y�a� � 1ÿ 1:708u2 � 3:081u4 ÿ 7:036u6 � 8:928u8 ÿ 4:266u10, �29�
where u = 2a/l.

The following Paris±Erdogan law for crack growth is considered:

dA

dt
� md�Dk�u, �30�

where d and u are two constant material parameters, m is the average number of cycle per unit time,

Fig. 1. Nonlinear system with crack growth in linear component under random loading.
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which now depends on the crack size due to sti�ness degradation, Dk(t ) denotes the range of the stress
intensity factor, and t is nondimensional time t=o0t with o0=K/M.

Let h(a ) be the stress intensity factor at the crack tip corresponding to a crack length 2a and unit
stress range. An approximate expression for h(a ) is (Grigoriu, 1990):

h�a� � ���
u
p �0:467ÿ 0:514u� 0:960u2 ÿ 1:421u3 � 0:782u4�: �31�

In this example, the stress in the plate where crack propagates is proportional to the displacement of
the nonlinear system. Assuming the displacement response of nonlinear structural system is a rather
narrow band process, the displacement range can be replaced approximately by 2P(t ). Thus
Dk=Ky(a )Drh(a )=2Ky(a )rh(a ) and Eq. (30) can be rewritten as

dA

dt
� mlQ�A�P u�t�, �32�

where

l � 2udK u, Q�A� � hu�A�yu�A�: �33�
Eq. (32) is a special case of Eq. (4) with DS replaced by 2S and Y(Z )=1. However, the response of

the structural system, e.g., P(t ) and m now depend on the current crack size due to the plate sti�ness
degradation. Under the assumption that stress in the plate is equal to displacement multiplied by plate
sti�ness, plate sti�ness degradation has a direct e�ect in reducing the stress in the plate, although it can
also increase the displacement response. Therefore, the stress in the plate is reduced compared with the
case without plate sti�ness degradation. Moreover, sti�ness degradation also reduces the average
number of cycle per unit time. For the special case of a linear system, analytical expressions are given
which clearly indicate that crack growth rate is reduced due to plate sti�ness degradation (Zhu et al.,
1992; Grigoriu, 1990). For the nonlinear system considered in this paper, the increment of displacement
response due to plate sti�ness degradation is smaller compared with that of the corresponding
degenerated linear system because of the existence of the nonlinear responding force, but plate sti�ness
degradation still has a direct e�ect in reducing stress in the plate, and the average number of cycle per
unit time is also reduced. Therefore, plate sti�ness degradation has the e�ect in prolonging the fatigue
life of the structural system and this e�ect is more distinct when the material parameter u becomes
larger.

Applying the above analysis procedure, the following conditional transition probability density of
A(t ) in the i-th crack size segment is obtained

pi�a,t 0jaiÿ1� �
exp

n
ÿ �bi�a� ÿmit 0

�2�
2s2i t

0
o

���������
2pt 0
p

Q�a�F
�
mi

����
t 0
p

=si
� , �34�

where ai R a R ai ÿ 1, t '=t2ÿt1, F(�) is the standard normal distribution function, and

bi�a� �
�a
aiÿ1

du

Q�u� , mi � mil
�1
0

rupi�r�dr, �35a�

s2i � 2m2i l
2

�1
0

��1
0

�1
0

ru1r
u
2pi�r1,r2;t�dr1 dr2 ÿm2

i

�
dt, �35b�

in which mi, pi(r ) and pi(r1,r2;t ) are evaluated according to Eqs. (24)±(26), respectively.
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4.1. Du�ng-type nonlinear structural system

The restoring force of the structural system is now in the form: K[y(a )x+gx 3]; then

G�x,a� � K

�
1

2
y�a�x2 � 1

4
gx4

�
; �36�

Ar�a� � 0: �37�

The ®rst order probabilistic density of E(t ) can be obtained from Eq. (16) as

p�eja� � C1T�eja�exp

�
ÿ 4z0

pG0
e

�
�38�

and the ®rst order probabilistic density of P(t ) is

p�rja� � p�e�je�K�y�a�r2=2�gr4=4�K�y�a�r� gr3�: �39�

The transition probability density of E(t ) is numerically evaluated from Eq. (14) by using the Crank±
Nicolson implicit di�erence method. The second order probability density of E(t ) can be evaluated
according to Eq. (17) and the second order probability density of P(t ) is then obtained from Eq. (19).

Numerical calculation is made with the following value parameters: l= 0.254 m, M = 5.35 kg,

Fig. 2. Mean fatigue life vs load spectral in Du�ng-type nonlinear system; ÐÐÐ approximate result; + simulation result.
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C= 4.375 kg sÿ1, K= 2.68 � 103 N/m, d=6.6 � 10ÿ7, u=2.25, 2a0=0.00254 m, 2acr=0.0254 m and the
thickness of the plate is 0.0254 m.

The mean and standard deviation of fatigue life in t=o0t, o 2
0=K/M for g=0.2 and a range of

excitation intensity are shown in Figs. 2 and 3, where s1 �
���������������������
G0=M2o3

0

q
. The probability density function

of fatigue life and reliability function are shown in Figs. 4 and 5, respectively, with s1=0.3. It is seen
from comparison of the approximate results (solid lines) with those from digital simulation (+) that the
two results agree quite well. It is also veri®ed that the present approach still yields good results even for
strong nonlinearity, g=1.0, as long as the damping is small. However, when z0 becomes large (z0 > 0.2),
there is certain discrepancy between the approximate results and those from the simulation, and the
theoretical results are on the safe side. The error is due to the fact that the displacement response of the
nonlinear system in this case is not narrow-banded, as shown in Fig. 6. Wrischig and Light (1982)
proposed an empirical prediction for the fatigue damage under a non-narrow band stress process by
letting D=lDN, l < 1.0, where DN is the damage indicator under a narrow-band stress process.
Therefore, the above observation agrees with Wrischig's conclusion.

Fig. 7 shows the e�ect of nonlinear term on the mean value of fatigue life. When excitation is small
(s1 < 0.08), the nonlinear e�ect is insigni®cant. When excitation becomes larger, the fatigue life is
prolonged due to the nonlinear term. This e�ect is more apparent when the material parameter u
becomes larger. The kurtosis value, de®ned as K � E�X 4�=s4x for a Du�ng-type nonlinear system, can
be shown to be smaller than 3. Therefore, the result agrees with Lutes' conclusion (Lutes et al., 1984)
about the e�ect of non-normality on fatigue life.

Fig. 3. Standard deviation of fatigue life vs load spectral level in Du�ng-type nonlinear system; ÐÐÐ approximate result; +

simulation result.
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Fig. 4. Probability density function of fatigue life for s1=0.3 in Du�ng-type nonlinear system; ÐÐÐ approximate result; +

simulation result.

Fig. 5. Reliability function of fatigue life for s1=0.3 in Du�ng-type nonlinear system; ÐÐÐ approximate result; + simulation

result.
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4.2. Hysteretic structural system

A hysteretic structural system, which is important in practice, is analyzed. Displacement X(t ) satis®es
the following nonlinear di�erential equation

Fig. 6. Displacement response sample of Du�ng-type nonlinear system when z0=0.5.

Fig. 7. Comparison of mean fatigue life for Du�ng-type nonlinear system (ÐÐÐÐ) and the corresponding degenerated linear

system (ÿÿÿÿ).
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M �X �t� � C _X �t� � Kfay�A�t��X�t� � �1ÿ a�Z�t�g � x�t�, �40�

where Z is the hysteretic component of the resorting force, which can be described by the following ®rst
order nonlinear di�erential equation (Zhu and Lin, 1991)

_Z � ÿgjXjZjZjnÿ1 ÿ bj _X jjZjn � A _X , �41�

in which A, n, b and g are positive constants controlling the hysteretic loop.
For the case of A=n = 1, b=g=0.5 and _x > 0,

G�x,a� � K
�
y�a� � ax2=2� �1ÿ a��x� x0�2=2

�
when ÿ lRxRÿ x0, �42a�

G�x,a� � Kfy�a� � ax2=2� �1ÿ a��1ÿ eÿ�x�x 0�2 �=2g when ÿ x0RxRl, �42b�

Ar�e,a� � K�1ÿ a�
�
4x0 ÿ �xÿ x0�2

�
, �43�

where l and x0 are determined by nonlinear equations which have been derived by Cai and Lin (1990).
The expressions of G(x,a ) and Ar in the region and those for other values of A, n, b and g are similar.

If x(t ) can still be modeled as a Gaussian white noise with intensity pG0, the ®rst and second order
probability densities of the amplitude envelope process can be evaluated according to Eqs. (18) and (19),
The statistics of fatigue life can be derived using Eqs. (9)±(11a) and (11b).

Fig. 8. Mean fatigue life vs load spectral level for a=0.5 in hysteretic system; ÐÐÐ approximate result; + simulation result.
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Numerical calculation is made with the same material parameter values as for the Du�ng-type
nonlinear system. The mean and standard deviation of the fatigue life in t=o0t for a=0.5, a=0.1 and a
range of excitation intensity are shown in Figs. 8±11, with s1 �

���������������������
G0=M2o3

0

p
. For moderate hysteresis,

a=0.5, it is seen that the theoretical results (solid lines) agree very well with those from simulation (+).
However, For strong hysteresis, a=0.1, there is a certain discrepancy when excitation is in the
intermediate level (0.1 < s1 < 1.0), and the theoretical results are on the safe side. The error is due to
the fact that the displacement response for strong hysteresis is not narrow-band for intermediate level
excitation, as shown in Fig. 12. The power spectral density of the displacement response in this case was
shown to be broad-band (Iwan and Lutes, 1967). The above observation agrees with empirical results by
Wrischig and Light (1982).

Similar conclusions can be drawn about comparisons of the reliability function, probability density
function of fatigue life and the statistics of crack size.

Fig. 13 shows the e�ect of hysteresis on the mean value of fatigue life. When excitation is small
(s1 < 0.05), the e�ect of hysteresis is not signi®cant. In the interval of intermediate excitation strength,
fatigue life is prolonged due to hysteresis compared with that in the linear system. This e�ect is more
apparent when the material parameter u becomes larger. For hysteretic system under an intermediate
level of excitation, the kurtosis value K< 3. Therefore, it also agrees with Lutes' conclusion about the
e�ect of non-normality on fatigue life. Moreover, it is noted that the e�ect of nonnormality of the stress
process due to the hysteretic system on fatigue life is more signi®cant than that of non-narrow band
stress process.

Fig. 9. Standard deviation of fatigue life vs load spectral level for a=0.5 in hysteretic system; ÐÐÐ approximate result; + simu-

lation result.
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5. Conclusions

A probabilistic analysis of fatigue crack growth, fatigue life and reliability of degrading elastic
structural components with random material resistance in nonlinear structural systems under random
loading has been presented. It is based on fracture mechanics and the principle of Stratonvich's
stochastic averaging, and is applicable when fatigue growth is a slow process compared with the stress
process, which is the case for high cycle fatigue. The analysis has accounted for the coupling between
response of nonlinear dynamic system and current state of crack size due to the degradation of
structural sti�ness. Since the degradation is a slow monatomic process, fatigue crack size is discretized
into segments over an admissible range and, eventually, combined under the Markovian assumption to
provided life time estimates. In particular, analytical expressions are given for the case that the random
stress process is narrow-banded. Assuming the stress in the elastic component where crack propagates is
proportional to the displacement of the whole nonlinear system, numerical results can be derived for the
probabilistic distribution of the stress process using the method of stochastic averaging of the energy
envelope. Numerical examples are given for two important nonlinear structural systems in practice
where randomized Paris±Erdogan crack growth law is applicable. The e�ect of nonlinearty on fatigue
life has also been indicated. Comparison of the approximate results with those obtained from simulation
shows that the approach yields good results for wide ranges of parameter values.

As a ®rst step of the analysis of fatigue crack growth of elastic components in nonlinear structural
system, some simpli®cations and assumptions have been made in the present paper to simplify the
analysis and computational e�orts. Approximate results have been compared only with those from a
digital simulation to validate the mathematical strategy. Comparison with experiments has not been
made due to lack of experimental data by others and due to the limitation on performing experiments

Fig. 10. Mean fatigue life vs load spectral level for a=0.1 in hysteretic system; ÐÐÐ approximate result; + simulation result.
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Fig. 11. Standard deviation of fatigue life vs load spectral level for a=0.1 in hysteretic system; ÐÐÐ approximate result; + simu-

lation result.

Fig. 12. Displacement response sample of hysteretic system for a=0.1 and s1=0.5.
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by the authors. More sophisticated analysis, which will involve retardation e�ect, statistical data of
random material resistance to fatigue crack growth, and comparison with real experiments should be
considered after more experience is gained through the present study.
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